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A straight front separating two semi-infinite regions of uniform potential vorticity
(PV) in a rotating shallow-water fluid gives rise to a localized fluid jet and
a geostrophically balanced shelf in the free surface. The linear stability of this
configuration, consisting of the simplest non-trivial PV distribution, has been studied
previously, with ambiguous results. We revisit the problem and show that the flow
is weakly unstable when the maximum Rossby number R > 1. The instability is
surprisingly weak, indeed exponentially so, scaling like exp[−4.3/(R − 1)] as R → 1.
Even when R =

√
2 (when the maximum Froude number F =1), the maximum growth

rate is only 7.76 × 10−6 times the Coriolis frequency. Its existence nonetheless sheds
light on the concept of ‘balance’ in geophysical flows, i.e. the degree to which the PV
controls the dynamical evolution of these flows.

1. Introduction
Two nearly distinct types of motion are found in the Earth’s atmosphere and

oceans, namely ‘balanced’ vortical motions and ‘unbalanced’ gravity-wave motions.
The balanced motions are controlled entirely by a materially advected scalar, the
potential vorticity (PV), from which all other dynamical fields (velocity, pressure, etc.)
can be derived via prescribed ‘inversion relations’. The residual motions are classified
as unbalanced motions, and are presumed to be gravity waves.

This decomposition is only strictly defined, however, for the linearized equations
about a state of rest. Otherwise, a degree of ambiguity arises (surrounding the choice
of inversion relations, for instance), making it impossible to define uniquely the
balanced part of the flow (cf. Mohebalhojeh & Dritschel 2001; Viúdez & Dritschel
2004 and references therein). Nevertheless, such a decomposition, even if inexact, is
often of great practical use, particularly in weather forecasting. The ambiguity in the
definition of balance can be exceedingly small in many circumstances.

A long-standing problem in geophysical fluid dynamics concerns the quantification
of the coupling between the two types of motion and, in particular, the mechanisms for
the generation of gravity waves by balanced motion (e.g. Lorenz & Krishnamurthy
1987; Warn 1997; Ford, McIntyre & Norton 2000; Vanneste 2004 and references
therein). Among these mechanisms, unbalanced instabilities of steady (balanced) flows
have recently received a great deal of attention (e.g. Ford 1994; Yavneh, McWilliams &
Molemaker 2001; McWilliams, Molemaker & Yavneh 2004; Plougonven, Muraki &
Snyder 2005). These instabilities have several significant features: with their growing
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Figure 1. Schematic diagram of a disturbed PV front. In the linear stability analysis, the
displacement η is taken to be purely sinusoidal.

modes of mixed nature, they reveal, in a simple context, the coupling that exists
between balanced and unbalanced motion in a basic state flow not at rest, and it
has been suggested that they may contribute to energy dissipation of balanced flows
(McWilliams, Molemaker & Yavneh 2001).

Here, we focus, or rather refocus, on the simplest instability mechanism of this type.
We consider a shallow-water flow, rotating uniformly at rate f/2, on an infinite plane,
and examine the linear stability of the simplest non-trivial PV distribution, namely
that of a single-step discontinuity along a front y = η(x, t), whose undisturbed position
is y = 0 (see figure 1). This configuration is characterized by a single non-dimensional
number, which we take to be the maximum Rossby number R or, equivalently, the
maximum Froude number F. It admits a single balanced or vortical wave, known as
a Rossby wave, which predominantly displaces the interface, and an infinite set of
gravity waves, just as in the case of a basic state at rest.

The stability of this PV-front was first examined, for a special case, by Paldor
(1983), then in the general case studied here by Ford (1993). Ford applied Ripa’s
(1983) theorem to prove that the front is formally (and hence linearly) stable for
R< 1, i.e. F < 1/

√
2. He also established the existence of a linear instability mechanism

for R> 1 (F > 1/
√

2) whose growth rate is exponentially small in the limit of large
x-wavenumber k � 1. Boss, Paldor & Thompson (1996) dismissed this instability on
the grounds that the disturbance mode had unbounded energy. This is not the case.
The unstable modes decay exponentially far from the front, and hence have finite
energy. We clarify this point in this paper.

We extend Ford’s (1993) numerical and anaytical results by examining the instability
in detail in the regime F < 1, especially near the threshold of instability. In this
regime, the observed growth rates, some 5–6 orders of magnitude smaller than f ,
require highly accurate numerics to capture. Ford’s WKB analysis is also extended
in order to obtain asymptotic estimates for the maximum growth rates and threshold
wavenumber as R → 1 (F → 1/

√
2). The maximum growth rate is found to be achieved

for a wavenumber that is asymptotically close to the threshold wavenumber; as a
result, it is several orders of magnitude smaller than might have been anticipated
from more straightforward asymptotics. We also demonstrate that some properties of
the instability can be predicted with remarkable accuracy using a quasi-geostrophic
description of the Rossby wave, in spite of the fact that R � 1.

The observed instability points to a breakdown of the concept of balance in a linear
system when R > 1. This is probably the simplest fluid-dynamical context in which
this occurs. The extremely small growth rates indicate that balance may dominate
even in parameter regimes where there is no frequency separation between balanced
and unbalanced motions. This finding provides theoretical support to the observation
that rotating flows are often close to some form of balance even in the absence of a
frequency separation.

The structure of the paper is as follows. The next section presents the governing
equations, the basic state, the linear system to be analysed, and the solution procedure.
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This is followed in § § 3 and 4 by numerical results and the asymptotic analysis,
including comparisons and careful checks on accuracy. The paper concludes in § 5
with some implications and a discussion of the nonlinear problem.

2. Formulation
2.1. Mathematical model

We consider an unbounded inviscid rotating shallow fluid layer held down by gravity.
Its evolution is modelled by the shallow-water equations

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
− f v = −∂φ

∂x
, (2.1)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ f u = −∂φ

∂y
, (2.2)

∂φ

∂t
+

∂(uφ)

∂x
+

∂(vφ)

∂y
= 0, (2.3)

where f is the Coriolis parameter (twice the background rotation rate), u and v are
the x and y velocity components, and φ = gh is the geopotential (cf. Gill 1982).

The above equations can be combined to prove that the potential vorticity

q =
∂v/∂x − ∂u/∂y + f

φ
, (2.4)

is materially conserved following fluid particles. In other words, contours of constant
q move with the fluid. The simplest non-trivial PV distribution imaginable consists
of a single PV jump or front separating two regions of uniform q in the plane, with
q = q± above and below the front y = η(x, t) (see figure 1). The conservation of q then
reduces to the fact that the front is a material line.

The basic flow that we consider corresponds to a straight front at y = 0;
it is characterized by a shelf φ = φ̄(y) in geostrophic balance with a zonal jet
(u, v) = (ū(y), 0). Without loss of generality, we can take f = 1 and c+c− = 1, where
c± = [φ̄(±∞)]1/2 are the short-scale gravity-wave speeds far from the front. We then
obtain

φ̄(y) = c2
± ± Fc±e−|y|/c±, ū(y) = −dφ̄(y)

dy
= Fe−|y|/c±, (2.5)

where we have introduced the maximum Froude number F= c− − c+, which we use
as control parameter for the basic state flow. In terms of F, c± = (1 + F2/4)1/2 ∓ F/2.
As an alternative to F, we also use the maximum Rossby number R which satisfies
F = R/

√
1 + R. (Ford (1993) used the ratio q+/q− = (1 + R)2.)

Ford (1993) applied Ripa’s (1983) theorem to establish that the basic flow (2.5) is
stable for F< 1/

√
2, i.e. R < 1. On the other hand, one expects that for F> 1, the flow

is susceptible to the formation of shocks which violate the hydrostatic approximation
used to derive the shallow-water equations. We therefore restrict our attention to the
regime 1/

√
2 � F � 1.

The linear stability of (2.5) is addressed by adding infinitesimal disturbances of the
form {û(y), v̂(y), φ̂(y)}ei(kx−σ t) and linearizing. Here k is the disturbance wavenumber
and σ is the disturbance frequency (a positive imaginary part implying instability).
We seek disturbances which do not change the basic-state PV except through
displacements of the front. This amounts to replacing any one of the three equations
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(2.1)–(2.3) with

qφ̂ = ikv̂ − û′, (2.6)

where q = q± = 1/c2
± for y � 0 and the prime denotes d/dy. We obtain two other

independent equations using (2.1) and (2.3),

i(kū − σ )û +
(
ū′ − 1

)
v̂ + ikφ̂ = 0, (2.7)

i(kū − σ )φ̂ + ikφ̄û + (φ̄v̂)′ = 0. (2.8)

Subtracting the limits of (2.7) as y → 0± and imposing continuity of v̂ and φ̂ gives
the jump condition

i(kF − σ )[û(0+) − û(0−)] = (c+ + c−)Fv̂(0). (2.9)

Together with the requirement that all fields vanish as y → ±∞, (2.6)–(2.9) form an
eigenvalue problem for σ with k and F as sole parameters.

2.2. Numerical considerations

The solution procedure follows in part Paldor (1983) and Boss et al. (1996), with
some important differences. First, we substitute ŵ = iv̂ to factor out the dependence
on i. As the non-constant coefficients in (2.6)–(2.8) involve only exponential functions,
we seek solutions of the form

(û/c±, ŵ/c±, φ̂/c2
±) = e−K±|y|

∞∑
n=0

(û±
n , ŵ±

n , φ̂±
n )e−n|y|/c± . (2.10)

Then, equating coefficients of e−Ω±
n |y|/c± for each n, where Ω±

n ≡ c±K± + n, we obtain
the recurrence relations

k±ŵ±
n = φ̂±

n ∓ Ω±
n û±

n , (2.11)

k±φ̂±
n − σ û±

n + ŵ±
n = −ε±(k±û

±
n−1 ± ŵ

±
n−1), (2.12)

k±û±
n − σ φ̂±

n ± Ω±
n ŵ±

n = −ε±(k±φ̂
±
n−1 ± k±û

±
n−1 + Ω±

n ŵ
±
n−1), (2.13)

where k± ≡ kc± are scaled wavenumbers, and ε± ≡ F/c± are the local Rossby
numbers at y =0± (the larger being ε+ = R). When n= 0, the n − 1 terms are absent,
and solvability (for k 	= 0) requires that

c±K± =
√

k2
± + 1 − σ 2 (2.14)

and φ̂
±
0 = û

±
0 (σk± ± c±K±)/(k2

± + 1). Note that K± = 0 gives the dispersion relation
for inertia–gravity waves far from the front.

We start with a guess for σ , using the small F ‘quasi-geostrophic’ approximation

σ = kF
[
1 − (1 + k2)−1/2

]
+ O(F2) (2.15)

(cf. Nycander, Dritschel & Sutyrin 1991). This turns out to be an excellent
approximation up to F =2. Taking û

±
0 = 1 arbitrarily, (2.11)–(2.13) are solved

recursively for the higher-order coefficients. Here, we use 1000 coefficients, sufficient to
ensure machine precision (at quadruple precision) except when R>∼ 1, see below. Then,
the series in (2.10) is summed at y = 0 to obtain û(0±), ŵ(0±) and φ̂(0±). The series is
adjusted by a constant factor to ensure continuity of ŵ, and a new guess for σ is then
found by substituting these values into (2.9). This guess is considered converged if it
differs by less than 10−25 from the previous iterate. This simple procedure converges
rapidly over the whole parameter space investigated.
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Figure 2. Growth rate contours – of log10(σi) – in the (k,F)-parameter plane. A few
contours are labelled (the contour interval is 1).

When R � 1, we can demonstrate that the series on the shallow side (y > 0) diverges
near the front. In this regime, Boss et al. (1996) solved the linear equations for
all y > 0 by numerical integration (using the variable z = e−y/c+). However, the series
converges fast for sufficiently large y, and hence it is necessary to perform a numerical
integration only over a small range in y typically. The series diverges when the local
Rossby number Re−y/c+ � 1. Convergence slows as R → 1, so for R > 0.9, we use the
series only beyond y = Y+, with Y+ chosen so that the local Rossby number there
equals 0.7. From y = Y+ to 0, numerical integration using a fourth-order Runge–Kutta
method is used, with a step size �y � 10−4c+/ max(k, 1). These numerical values ensure
both solution methods (series only and series plus numerical integration) at R = 0.9
agree to at least 7 digits in their value of σ over 0 <k < 10. The results reported are
insensitive to these parameters except for very small R − 1, when growth rates can be
of the order of the machine precision.

3. Numerical results
We start by examining the general stability properties over the complete para-

meter space investigated, namely 1 � k � 16 and 0.75 � F � 1.7 (or, alternatively 1.08 �
R � 3.68). Figure 2 shows the growth rate

σi = Im (σ ),

in logarithmic scale, in the (k, F)-plane. First of all, there is a long-wave cutoff: only
wavenumbers larger than some cutoff wavenumber kc are unstable according to the
numerics (we cannot discount other modes of instability, but an extensive search has
not revealed any). The long-wave cutoff increases rapidly as F → 1/

√
2 or R → 1, and

the growth rates fall sharply. Even quadruple precision is not enough to capture the
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Figure 3. Approximate Rossby-wave σR and gravity–wave σG dispersion relations as a
function of x wavenumber k. σR makes use of the quasi-geostrophic (QG) approximation
(strictly valid for R � 1), while σG applies far from the front on the shallow side. σG(0) is for a
y wavenumber �= 0, while σG(�) is for finite � (here 2). The curves were generated using R= 3
(F= 1.5). The predicted long-wave cutoff occurs when σR = σG(0), at k = kc . For all k > kc ,
there exists a real value of � for which σR = σG(�), and there is always instability. Note: the
curves cross only when R> 1.

exceedingly weak growth rates below F =0.73, but their existence is clear from the
asymptotic analysis described in the next section. Remarkably, growth rates are very
small, indeed never greater than 7.76 × 10−6, when F � 1. These instabilities would
be virtually impossible to detect in numerical simulations of the full equations, and
would probably be overwhelmed by nonlinear effects (see discussion).

Instability occurs when the frequency of the (PV-controlled) Rossby wave which,
in the first instance, we may approximate by the quasi-geostrophic result (2.15),
σR = kF[1 − (1 + k2)−1/2], matches (or nearly matches) that of an inertia–gravity wave
on the shallow side of the front, σG = (1+c2

+(k2 +�2))1/2, where � is the y wavenumber

far from the front (see figure 3). When F< 1/
√

2, no real values of k and � can be
found for which σR = σG. However, for F � 1/

√
2, there exists a range of k extending

from a long-wave cutoff kc to ∞ and real values of �(k) with matching frequencies.
Moreover, there is then a turning point where the phase speed σ/k matches the
Doppler-shifted inertia–gravity-wave speed φ̄1/2 + ū. Through this turning point, the
character of the mode changes from an evanescent Rossby mode to an oscillatory
(but slowly decaying) inertia–gravity mode; this is discussed further in § 4.

This qualitative picture is consistent with the numerical results, as demonstrated
next. The long-wave cutoff kc is found to coincide with � = 0, i.e. an infinitely long
wave in y (or equivalently a turning point for y → ∞). Using σR = σG for � = 0 then
gives a relation between kc and either R or F. This is compared in figure 4 against
the numerical results (i.e. the ‘exact’ or full stability analysis). The agreement is
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Figure 4. Approximate quasi-geostrophic (QG) estimate of the long-wave cutoff (or its inverse
1/kc) compared with the ‘exact’ stability analysis for Rossby numbers (a) 1 � R � 4 and
(b) an enlargement for 1 � R � 1.2. Note that the QG model is strictly valid only when R � 1

(F � 1/
√

2). Also shown is the WKB estimate, (4.11) of § 4.

spectacular considering that the QG approximation is being pushed well beyond its
expected limits of validity. In fact, the agreement remains good for R as large as
3. As R → 1, the predicted kc is given by 1/(R − 1). This result is very close to the
exact value: the asymptotic calculations of § 4 show that the exact value tends to
kc = 1.0606/(R − 1).

The agreement also confirms the simple idea that instability can be predicted by
matching the frequencies of Rossby and gravity modes. This idea can also be used to
estimate the dependence of the y wavenumber � on k, shown in figure 5 for the case
F = 1 (R = 1.618 . . .). Here, the ‘exact’ results are obtained from the imaginary part of
K+, see (2.10), since for y � 1, the disturbance (û, ŵ, φ̂) ∼ (û+

0 , ŵ+
0 , φ̂+

0 )e−K+y . Hence,
� = −Im (K+). The agreement is excellent, apart from a small offset in k. Again this
shows that mode matching explains the essential nature of the instability.

The real part of K+ must be positive for the disturbance to decay as y → ∞.
This is shown for the same case (F= 1) in figure 6, now using the full stability
analysis. Instability erupts at k = kc =3.21445 . . . , and for the entire unstable range
K+

r > 0. However, K+
r is O(σi) � 1, so the decay is extremely slow (but nonetheless

exponential). Over any reasonable distance, the disturbance on the shallow side of the
front looks like a pure gravity wave (and that on the deep side looks like a decaying
Rossby wave). As k passes downward through kc, it appears that K+

r jumps to a large
value. Closer inspection (figure 6b) reveals that K+

r is in fact continuous, as is the y

wavenumber � = −K+
i (this is zero for k � kc). Hence, there is a continuous transition

to instability, and all unstable modes are found to have finite energy.

4. WKB analysis
The instability of the PV-front can be studied asymptotically in the limit of large

wavenumber k � 1 using a WKB analysis. Ford (1993, 1994) carried out such an
analysis and found the growth rates to be exponentially small in k. This type of
result is most useful when the largest growth rates occur for k � 1. This is the case
here in the marginally unstable regime R − 1 � 1. However, even in this regime, the
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Figure 5. Approximate quasi-geostrophic (QG) estimate of the y wavenumber � compared
with the ‘exact’ stability analysis as a function of k. Here, we have taken F =1 (R=1.618 . . .).
Maximum instability is observed for k =4.3386. Note that � is real only for k � kc .
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Figure 6. Dependence of K+
r (the real part of K+) and the growth rate σi on k for F = 1

(R= 1.618 . . .). (a) A range of k including the long-wave cutoff and the peak instability.
(b) Centred on k0 = 3.21445147, focuses on the region of the long-wave cutoff; it also shows
�= −K+

i .

maximum growth rate cannot be inferred directly from Ford’s (1993) work. This is
because Ford’s analysis breaks down for k near kc, where the maximum growth rate
is attained. We therefore extend the WKB analysis to obtain an approximation valid
in this region. We only sketch the derivation and relegate details to the Appendix.
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Figure 7. Difference between the WKB frequency and the ‘exact’ frequency, σW − σr , and
between the QG frequency and the ‘exact’ frequency, σG − σr , for F= 1. Note σr = 14.89 . . . for
k =16.

The WKB approach seeks solutions for k � 1 in the form

û = A(y)ekΨ (y), (4.1)

and expands A, Ψ , and the phase speed c in inverse powers of k. In Appendix A we
obtain in this manner the approximation

σ = kF − F(1 + F2/4)1/2 + O(1/k2), (4.2)

for the (Rossby-wave) frequency, consistent with the quasi-geostrophic approximation
(2.15) in the limit F → 0. Note that this approximation is one order more accurate than
that obtained by Ford (1993), although the new, O(1/k) term turns out to vanish.
This higher accuracy is required below for the computation of the growth rate near
kc. Figure 7 shows how the estimate (4.2), denoted σW in the figure, compares with
the actual real part of σ , for F= 1 and over the same range of wavenumbers used in
figure 2. A comparison with the QG estimate (denoted σG) is also given. At large k,
the WKB estimate is more accurate, as would be expected.

The computation leading to (4.2) can, in principle, be extended to obtain
approximations to σ accurate to higher orders O(1/kn). To all algebraic orders,
σ is real, because, as recognized by Ford (1993; see also Knessl & Keller 1992), the
instability is characterized by a non-zero imaginary part of σ that is exponentially
small in k. This can be traced to the existence, ignored in the above developments, of
a turning point where Ψ changes from being purely real to being purely imaginary.
To leading order, the turning-point position, y∗ say, is determined by the condition

c̄2
0(y∗) = [F − ū(y∗)]

2 = φ̄(y∗), (4.3)
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which has a solution y∗ > 0 for R> 1. This condition expresses the match at y∗ between
the leading-order Rossby-wave frequency kF and the Doppler-shifted gravity-wave
frequency k(ū + φ̄1/2).

The instability growth rate σi = Im (σ ) can be estimated by modifying the WKB
solution for y > 0 to account for the existence of this turning point. Briefly, the
decaying solution (4.1) must be supplemented by an exponentially growing solution,
which is subdominant for 0 <y <y∗, but becomes of a similar order as the decaying
solution for y ≈ y∗. The combination of the two solutions, with appropriate relative
amplitudes, ensures that the oscillatory solution for y >y∗ satisfies a radiation
boundary condition as y → ∞. Note that the exponential decay of the solutions
for y → ∞ with decay rate proportional to σi described in § 3 is not apparent in the
solution for û so obtained; this is because the WKB analysis implicitly assumes that
y � σ −1

i .
In the Appendix, we derive several approximations to σi , valid in regions of

parameter space distinguished by the relative values of k � 1 and

δ ≡ R − 1 > 0.

Assuming that k � 1, we obtain the expression

σi ∼ F
c+ + c−

4
e−2kΨ∗ where Ψ∗ =

∫ y∗

0

(
1 − c̄2

φ̄

)1/2

dy, (4.4)

and c is approximated as c ∼ F + c1/k, with c1 = −F(1 + F2)1/2. This result is valid
uniformly for k � 1 in two regimes: (i) δ = O(1), and (ii) δ =O(1/k) � 1. In regime
(i), Ψ∗ can be expanded in inverse powers of k to find

Ψ∗ =

∫ y∗

0

(
1 − c̄2

0

φ̄

)1/2

dy − 1

k

∫ y∗

0

c̄0c1

φ̄
(
1 − c̄2

0/φ̄
)1/2

dy + O(1/k2). (4.5)

This is the result originally obtained by Ford (1993). It fails in regime (ii) because for
sufficiently large y <y∗, 1 − c̄2

0/φ̄ = O(δ) and the expansion leading to (4.5) becomes
disordered.

In regime (ii), since kδ = O(1), it is natural to introduce the scaled dimensionless
wavenumber

κ ≡ δc+k = O(1). (4.6)

Expanding (4.3), it emerges that there is a turning point and hence instability
is possible provided that κ > 3/4. Taking (4.6) into account, this gives a first
approximation to the cutoff wavenumber

kc =
3
√

2

4δ
+ O(1). (4.7)

This result is refined below with the calculation of the O(1) term. Assuming k > kc,
i.e. κ > 3/4, the growth rate in regime (ii) is found as

σi ∼ 3
8
e−2kΨ∗, (4.8)

where Ψ∗ is expanded in powers of δ according to

2kΨ∗ =
a1

δ
+

a2

δ1/2
+ a3 + O

(
δ1/2

)
. (4.9)
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Here a1, a2 and a3 are functions of κ defined by integrals and given by a1 = 5.782 κ ,
a2 = −π[2κ(4κ − 3)]1/2, and a3 = 7.052 κ − 3.789. (See (A 12)–(A 14) for the exact
expressions of the numerical constants given here to four-digit accuracy.)

As the expression for a2 suggests, the approximation (4.8)–(4.9) breaks down for
κ − 3/4 = O(δ), i.e. in the vicinity of the cutoff wavenumber. Since this is also where
the maximum of σi is attained, it is important to derive an asymptotic formula
appropriate for this regime, which we denote by (iii) and is defined in dimensional
terms by k − 3

√
2/(4δ) = O(1).

Calculations detailed in the Appendix examine the instability in regime (iii). There
we start by defining the scaled wavenumber

k ≡ κ − 3/4

δ
= O(1) (4.10)

and show that instability occurs only for k> 31/24. This provides the estimate of the
cutoff wavenumber

kc =
3
√

2

4δ
+

71
√

2

48
+ O(δ), (4.11)

which improves on (4.7). (This estimate is compared with the numerical and quasi-
geostrophic results in figure 4.) The instability growth rate is then found in the
form

σi ∼ 3
4
sinh(πν)e−2Φ∗/δ, (4.12)

where

ν = (6k − 31/4)1/2, 2Φ∗ = b1 + δb2 + O(δ2).

Here, b1 = 4.336 and b2 = 5.782k+1.5 are defined by integrals given in (A 23). Note that
the two approximations (4.8) and (4.12) can be verified to match in the intermediate
region δ � |κ − 3/4| � 1 where both are valid.

The expression (4.12) is the sought approximation for the growth rate valid for k in
an O(1) neighbourhood of the cutoff wavenumber (4.11). It allows the estimation of
the maximum growth rate, found to be achieved for k= 1.735. It also shows how the
sharp drop in the growth rate as the long-wave cutoff is approached is described by a
hyperbolic sine function. Mathematically, this behaviour arises because the standard
Airy-function connection across a turning point is replaced near the cutoff by a
Bessel-function connection; it is likely to be generic for problems where marginal
stability coincides with the appearance of a turning point at infinity. Note that the
crude approximation exp(−b1/δ) of the maximum growth rate can be inferred from
Ford’s (1993) result; the full expression (4.12) shows this overestimates the growth
rate by more than three orders of magnitude.

The three growth-rate estimates (4.4), (4.8) and (4.12), denoted by WKB1, WKB2

and WKB3, respectively, are compared in figure 8 with the ‘exact’ growth rate as a
function of κ and for two values of F. For the case F = 0.8 (δ = R − 1 = 0.1816 . . . ,

figure 8a, b), the estimate (4.4) accurately captures the exponential decay of σi for
large κ . It also performs reasonably well for κ = O(1) and away from the long-wave
cutoff; this is the range for which it reduces to (4.8). The performance of the third
estimate (4.12) is best appreciated from figure 8(b) which focuses on the region near
the cutoff wavenumber and maximum growth rate. The estimate provides a good
approximation to the cutoff wavenumber, but only a crude one for the behaviour
of σi near its maximum. The situation improves as δ decreases. This is apparent
from the results obtained for F =0.76 (δ =0.1018 . . .) shown in figure 8(c). This time,
(4.12) estimates well the long-wave cutoff (κc =0.88152 . . . versus 0.86513 . . .) and
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Figure 8. Comparison of various WKB estimates of the growth rate σi with the ‘exact’
result, as a function of the scaled wavenumber κ , for F = 0.8 (R= 1.1816 . . .) (a, b) and
F= 0.76 (R= 1.1018 . . .) (c). The labels WKB1, WKB2 and WKB3 correspond to formulae
(4.4), (4.8) and (4.12), respectively.

provides the growth rate within a factor of approximately four. Convergence of (4.12)
to the exact values of σi with δ → 0 appears to be very slow, and the limitations of
quadruple precision forbid using a value of δ small enough to demonstrate it plainly.
The slow convergence is illustrated well by the fact that values as small as δ =10−9

are necessary to observe the overlap between (4.4) (or (4.8)) and (4.12) in their region
of common asymptotic validity.

5. Discussion
This paper has re-examined the stability of a potential-vorticity front in the rotating

shallow-water equations. This was previously examined by Ford (1993) and Boss et al.
(1996). The front, whose properties depend on a single dimensionless parameter F

(or equivalently R), is unstable provided that F> 1/
√

2 (or R > 1). The associated
disturbances have Rossby-wave characteristics near the front and inertia–gravity-
wave characteristics far away, on the shallow side of the front. The instability is
exceptionally weak, with growth rates scaling exponentially in 1/(R − 1) as R → 1 and
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numerically very small even for R − 1 = O(1). Correspondingly, the amplitude of the
growing mode decays very slowly with the distance from the front.

The characteristics of the instability (y-wavenumber �, cutoff wavenumber kc) can
be inferred from the condition of frequency matching between the near-front Rossby
wave, and the far-field inertia–gravity wave. Whilst the dispersion relation of the latter
is given explicitly (since the basic-flow height is constant in the far field), the Rossby-
wave dispersion relation must be approximated in some way. The quasi-geostrophic
approximation (2.15), which formally assumes R � 1, turns out to be useful for this
purpose since it proves remarkably accurate well into the unstable regime R> 1. An
asymptotically consistent alternative is provided by the WKB approximation (4.2)
valid for k � 1. This approximation makes it possible to describe analytically the
instability, including the long-wave cutoff, in the limit R → 1, when all the unstable
wavenumbers satisfy k = O(1/(R − 1)) � 1.

The instability studied in this paper illustrates several aspects of the concept
of balance for rapidly rotating fluids. First, the stability in the regime 0 <R < 1,
established by Ford (1993) using Ripa’s (1983) theorem, is consistent with the idea
that a balanced flow, represented here by the frontal Rossby wave, is isolated from
the inertia–gravity waves when a complete frequency separation exists. Secondly, the
threshold value R= 1 for instability coincides precisely with the breakdown of the
frequency separation. Thirdly, the unbalanced phenomenon – here the instability – is
exponentially weak in the limit of small frequency overlap, and turns out to remain
weak over a wide parameter range. This last point echoes what is frequently observed
in more realistic flows, namely the weakness of unbalanced phenomena even in the
absence of a frequency separation.

Note that analogous instabilities in continuously stratified flows do not appear to
have a threshold Rossby number (e.g. Yavneh et al. 2001; McWilliams et al. 2004).
This can be attributed to the dispersion relation for inertia–gravity waves in stratified
flows which allows for arbitrarily small phase speed (for large wavenumbers) and
hence for a match with any flow speed. (This can be rephrased by stating that there
is no analogue of Ripa’s (1983) theorem for continuously stratified flows.)

In realistic nonlinear time-dependent flows, there is of course no frequency
separation, and the excitation of inertia–gravity waves can be expected to take place
for all values of R. The mechanism for this excitation can be either an instability of a
type generalizing that studied in this paper, or a spontaneous-adjustment mechanism
similar to that examined by Vanneste & Yavneh (2004) and Vanneste (2004) in simple
toy models. In a more realistic context, the nonlinear evolution of a potential-vorticity
front in the full shallow-water equations would seem an ideal problem to examine this
excitation. However, based on preliminary numerical simulations, even this simplest
of problems appears formidable, requiring highly accurate numerics as well as a
careful initialization to avoid a significant presence of inertia–gravity waves from the
start. For small R, it is practically impossible to differentiate inertia–gravity waves
from numerical error, even when numerical methods specifically designed to handle
potential vorticity discontinuities are employed (cf. Mohebalhojeh & Dritschel 2001
and references). For larger R, it becomes increasingly difficult to separate balanced and
unbalanced motions, and for R>

√
2, the governing equations themselves may break

down as a result of shock formation (thereby violating the underlying hydrostatic
approximation). In a way, these difficulties emphasize the tight control often exerted
by balanced motions in geophysical flows.

We conclude by remarking on the assumption of a discontinuous PV distribution
made for the basic state. This is motivated not only by the (relative) simplicity of the
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analysis, but also by the observation that geophsyical flows often exhibit sharp PV
fronts separating well-homogenized regions. Smoothing the PV distribution across
the front would lead to significant changes, with the appearance of a critical layer for
the Rossby wave. However, because the non-zero imaginary part of σ means there is
no singularity at the critical level, we can expect the instabilities found in this paper
to remain relevant. This is also suggested by the results of McWilliams et al. (2004)
where mixed-mode (Kelvin/inertia-gravity) instabilities appear in the presence of a
smooth PV gradient and hence of critical levels. Given the very small values of σi

found here, it would nevertheless be of interest to assess the effect of smoothing the
PV front, and analyse the interplay between the growth rate and the sharpness of the
PV front.

J. V. is funded by a NERC Advanced Research Fellowship.

Appendix. WKB derivation
In this Appendix, we provide some details of the derivation of the approximations

(4.2) for the Rossby-wave frequency, and (4.4), (4.8) and (4.12) for the instability
growth rate.

A.1. Rossby-wave frequency

From (2.6)–(2.8), a single equation for û can be derived. This reads

û′′ +
φ̄′

φ̄
û′ +

[
k2

(
c̄2

φ̄
− 1

)
− φ̄

c4
±

+
(φ̄c̄)′

c2
±φ̄

]
û = O(1/k), (A 1)

where c̄ = c − ū= σ/k − ū. The associated boundary condition is given in (2.9), with

v̂ = −i
(
û′ + c̄û

)
/k + O(1/k2). (A 2)

Note that the error terms assume that û′/û= O(k), as is relevant for the WKB
solution.

We seek solutions to (A 1) for k � 1 in the form (4.1) and require that both (A, Ψ )
and (A, −Ψ ) be solutions. This leads to

k2Ψ ′2A + A′′ +
φ̄′

φ̄
A′ +

[
k2

(
c̄2

φ̄
− 1

)
− φ̄

c4
±

+
(φ̄c̄)′

c2
±φ̄

]
A = O(1/k), (A 3)

2kΨ ′A′ + kΨ ′′A + k
φ̄′

φ̄
Ψ ′A = O(1/k). (A 4)

Equation (A 3) can be solved perturbatively, by expanding

Ψ = Ψ0 + Ψ1/k + O(1/k2), c = F + c1/k + c2/k2 + O(1/k3). (A 5)

This gives

Ψ ′
0 = ∓

(
1 − c̄2

0

φ̄

)1/2

, Ψ ′
1 = − c̄0c1

φ̄
(
1 − c̄2

0/φ̄
)1/2

, (A 6)

where the signs, corresponding to y � 0, are chosen to ensure exponential decay away
from the PV front. At y = 0±, in particular, Ψ ′

0 = ∓ 1, Ψ ′′
0 = 0 and Ψ ′

1 = 0. It follows
from (A 2), (4.1) and (A 4) that

v̂ = −i

[
Ψ ′

0 +
1

k
Ψ ′

1 − 1

2k

(
Ψ ′′

0

Ψ ′
0

+
φ̄′

φ̄

)
+

c̄0

kc2
±

]
û + O(1/k2),
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and hence that

v̂ = i

(
±1 − F

2k

)
û + O(1/k2) at y = 0±. (A 7)

Introducing (A 7) into the jump condition (2.9) leads to the first two corrections in
the asymptotic expansion of c, namely c1 = −F(c+ + c−)/2 and c2 = 0, and hence to
the approximation (4.2) for the frequency.

A.2. Growth rate in regimes (i) and (ii)

As described in § 4, the instability is associated with the existence of a turning point
y∗ satisfying (4.3). Because of this turning point, we must consider a superposition of
growing and decaying WKB solutions for y > 0. In regime (i), defined by k(R−1) � 1
and considered by Ford (1993), the WKB solution corresponding to (A 6) remains
valid for y∗ − y � k−2/3. Taking

Ψ0 =

∫ y

0

(
1 − c̄2

0(y
′)

φ̄(y ′)

)1/2

dy ′, Ψ1 = −
∫ y

0

c̄0(y
′)c1

φ̄(y ′)
[
1 − c̄2

0(y
′)/φ̄(y ′)

]1/2
dy ′,

the solution in this range is written as u = A(y)[a exp (kΨ0 + Ψ1) +
b exp (−kΨ0 − Ψ1)]+O(1/k), for two constants a and b. The Airy-function connection
with an outward-propagating solution for y − y∗ � k−2/3 imposes the relationship

aekΨ0(y∗)+Ψ1(y∗)

be−kΨ0(y∗)−Ψ1(y∗)
=

i

2
(A 8)

(Ford 1993, 1994; see also, e.g., Bender & Orszag 1978, § 10). It then follows from
(A 2) that v̂ = −iΨ ′

0(a exp (kΨ0 + Ψ1) − b exp (−kΨ0 − Ψ1)) + O(1/k) and

c1

(
1 +

1 + a/b

1 − a/b

)
= −F(c+ + c−). (A 9)

Using (A 8) and the smallness of the exponentials gives

Im c1 =
F(c+ + c−)

4
exp (−2[kΨ0(y∗) + Ψ1(y∗)]), (A 10)

that is, the estimate (4.4) for the growth rate, with Ψ∗ approximated as in (4.5).
The WKB approach just outlined breaks down when k(R − 1) = O(1). To estimate

the growth rate in this regime, denoted by (ii), a different WKB expansion can be used,
with δ = R − 1 as the small parameter. An alternative is to note that the derivation
above remains valid in regime (ii) provided that we avoid introducing the expansion

c̄2

φ̄
− 1 =

c̄0
2

φ̄
− 1 +

2c̄0c1

kφ̄
+ O(1/k2).

Repeating the derivation leading to (A 10), but without this expansion (and with c

approximated according to (4.2)) leads to the growth rate in the form (4.4). This
approximation is valid uniformly for both regimes (i) δ = O(1) and (ii) δ = O(1/k).
The simplified expression (4.5) follows in regime (i) by expansion in inverse powers of
k. We now derive a simplified expression valid in regime (ii) by expansion in powers
of δ.

Introducing the scaled wavenumber κ defined in (4.6) and noting that F= 1/
√

2 +
3/(4

√
2)δ +O(δ2), we expand equation (4.3) for the turning-point position and obtain

z∗ ≡ e−y∗/c+ =
2δ

3

(
1 − 3

4κ

)
+ O(δ2). (A 11)
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The prefactor F(c+ + c−)/4 in (4.4) reduces to 3/8 (cf. (4.8)). Then, using (4.6) and
(A 11), we compute

c

c+

= 1 + δ

(
1 − 3

4κ

)
+ O(δ2)

and

1 − c̄2

φ̄
=

z(3 − z)

1 + z
− δ

2(1 − z2)(1 − z − 3/(4κ)) − z(1 − z)2

(1 + z)2
+ O(δ2),

where z ≡ exp(−y/c+). Substituting into (A 4) and changing the variable of integration
from y to z leads to an integral that is best expanded by splitting the integration
range [z∗, 1] at some intermediate z∗ � z � 1 (e.g. Hinch 1991, § 3.4). A tedious but
straightforward computation leads to the approximation (4.9), where

a1 = 2κ

∫ 1

0

(
3 − z

z(1 + z)

)1/2

dz, (A 12)

a2 = −π[2κ(4κ − 3)]1/2, (A 13)

a3 = κ

[
4√
3

−
∫ 1

0

(
(z − 1)(z2 + z − 2)

z3/2(1 + z)3/2(3 − z)1/2
− 2√

3z3/2

)
dz

]

− 3√
3

− 3

2

∫ 1

0

(
z2 − 1

z3/2(1 + z)3/2(3 − z)1/2
+

1√
3z3/2

)
dz. (A 14)

The same result obtains if (A 1) is expanded for δ � 1, κ =O(1), and a WKB-
analysis of the resulting equation is performed. The derivation is then particularly
tedious because approximations in four distinct regions (z = O(1), z∗ <z =O(δ), |z −
z∗| =O(δ1/3), and z < z∗) must be matched.

A.3. Growth rate in regime (iii)

In an O(δ) neighbourhood of the cutoff wavenumber κ = 3/4 + O(δ), the WKB
approximation used above breaks down. This is because for y � 1, k2(1−c̄2

0/φ̄) = O(1),
and the other terms multiplying û in (A 1) must be taken into account. The turning
point satisfies z∗ = O(δ2) and two expansions must be derived and matched: the first
one valid for z =O(1), the second valid for z = O(δ2).

Let us first consider the region z = O(1). Introducing (4.6) and κ =3/4+ δk reduces
(A 1) to

û′′ +
φ̄′

φ̄
û′ +

[
1

δ2

9z(z − 3)

16(1 + z)
+

1

δ

(
9z

16

2(z2 − 1) − (1 − z)2

(1 + z)2
+

3kz(z − 3)

2(1 + z)

)]
û = O(1).

Seeking a solution in the WKB form

û = A(y)
(
aeΦ/δ + be−Φ/δ

)
with Φ = Φ0 + δΦ1 + O(δ2), (A 15)

leads to

Φ0(z) =
3

4

∫ 1

z

[
3 − z′

z′(1 + z′)

]1/2

dz′, (A 16)

Φ1(z) = k

∫ 1

z

[
3 − z′

z′(1 + z′)

]1/2

dz′ +
3

8

∫ 1

z

2(1 − z′2) + (1 − z′)2

z′1/2(1 + z′)3/2(3 − z′)1/2
dz′. (A 17)

The behaviour for δ2 � z � 1, required for matching, readily follows as

Φ = Φ∗ − 3
√

3z

2
+ O(z, δ2) with Φ∗ = Φ0(0) + δΦ1(0). (A 18)
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We next consider the region z = O(δ2). Because k2
(
c̄2/φ̄ − 1

)
= O(1) for z =O(δ2),

the O(1/k)-accurate or, equivalently O(δ)-accurate approximation (4.2) to σ must be
used, and the O(1) terms in (A 1) must be taken into account. Defining the O(1)
scaled variable ζ by

z = δ2ζ,

we approximate (A 1) as

d2û

dζ 2
+

1

ζ

dû

dζ
− 27(ζ − ζ∗)

16ζ 2
û = O(δ) where ζ∗ =

8

9

(
k − 31

24

)
. (A 19)

Clearly, there is a turning point in the domain – and hence an instability – only if
k> 31/24. This provides the estimate (4.11) for the cutoff wavenumber.

Equation (A 19) can be solved explicitly in terms of modified Bessel functions of
imaginary order. In the notation of Dunster (1990), we write the general solution as

û = αKiν(s) + βLiν(s), (A 20)

where α and β are arbitrary constants,

s =
3
√

3ζ

2
, ν =

3
√

3ζ∗

2
= (6k − 31/4)1/2. (A 21)

A relationship between α and β is obtained by imposing the radiation condition as
y → ∞, i.e. as s → 0. Using the asymptotics

Kiν(s) ∼ −
(

π

ν sin(πν)

)1/2

sin(ν log(s/2) − ϕ),

Liν(s) ∼
(

π

ν sin(πν)

)1/2

cos(ν log(s/2) − ϕ),

as s → 0, with ϕ = arg[Γ (1 + iν)] (Dunster 1990), we obtain from (A 20) the large-y
behaviour

û ∼
(

π

ν sin(πν)

)1/2

[α sin(νy/2 + C) + β cos(νy/2 + C)],

where C is independent of y. The radiation condition for y → ∞ then imposes

α

β
= i. (A 22)

We now match (A 20) with (A 18). Using the asymptotics

Kiν(s) ∼
( π

2s

)1/2

e−s, Liν(s) ∼ 1

sinh(πν)

( π

2s

)1/2

es

of the Bessel functions as s → ∞ (Dunster 1990), we obtain from (A 15), (A 18), (A 20)
and (A 22) that

aeΦ∗/δ

be−Φ∗/δ
= sinh(πν)

α

β
= i sinh(πν).

Applying the jump condition leads to an expression for c1 similar to (A 9), from which
we deduce (4.12). Using (A 16)–(A 18), the exponent 2Φ∗ can be written explicitly as
2Φ∗ = b1 + δb2, with

b1 = 3
2

∫ 1

0

[
3 − z

z(1 + z)

]1/2

dz, b2 = 2k

∫ 1

0

[
3 − z

z(1 + z)

]1/2

dz + 3
2
. (A 23)
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With ν given in (A 21), this provides a closed form approximation to the instability
growth rate near the long-wave cutoff.
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Viúdez, A. & Dritschel, D. G. 2004 Optimal potential vorticity balance of geophysical flows.
J. Fluid Mech. 521, 343–352.

Warn, T. 1997 Nonlinear balance and quasi-geostrophic sets. Atmos. Ocean 35, 135–145.

Yavneh, I., McWilliams, J. C. & Molemaker, M. J. 2001 Non-axisymmetric instability of
centrifugally stable, stratified Taylor–Couette flow. J. Fluid. Mech. 448, 1–21.


